<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 14 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:Helvetica;
        panose-1:2 11 6 4 2 2 2 2 2 4;}
@font-face
        {font-family:Helvetica;
        panose-1:2 11 6 4 2 2 2 2 2 4;}
@font-face
        {font-family:Cambria;
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
@font-face
        {font-family:"Lucida Sans Unicode";
        panose-1:2 11 6 2 3 5 4 2 2 4;}
@font-face
        {font-family:AdvPSA5BA;
        panose-1:0 0 0 0 0 0 0 0 0 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
        {mso-style-priority:99;
        mso-style-link:"Balloon Text Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:8.0pt;
        font-family:"Tahoma","sans-serif";}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
span.BalloonTextChar
        {mso-style-name:"Balloon Text Char";
        mso-style-priority:99;
        mso-style-link:"Balloon Text";
        font-family:"Tahoma","sans-serif";}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri","sans-serif";}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal">Dear All,<o:p></o:p></p>
<p class="MsoNormal">For those of you interested in echolocation, we have two recent papers out showing that toothed whales can change the width of their biosonar beams adaptively to the sonar task at hand. At close range they broaden their acoustic field of
 view likely to minimize the risk that prey escapes, while at longer ranges a narrow beam may reduce clutter problems.<o:p></o:p></p>
<p class="MsoNormal">Please find abstracts below. Requests for pdf’s can be made to the first authors:<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Danuta Wisniewska: <a href="mailto:danuta.wisniewska@bios.au.dk">
danuta.wisniewska@bios.au.dk</a><o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Frants Jensen: <a href="mailto:fjensen@princeton.edu" target="_blank">
fjensen@princeton.edu</a><o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Best<o:p></o:p></p>
<p class="MsoNormal">Peter<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D">Peter T. Madsen<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D">Zoophysiology, Department of Bioscience<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D">Aarhus University, Build. 1131, CF Mollers Alle<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D">8000 Aarhus C, Denmark<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D">Phone: 0045 8715 6501</span><b><span style="font-size:10.0pt;font-family:"Cambria","serif";letter-spacing:-.15pt">
</span></b><span style="font-family:"Cambria","serif";color:#1F497D"><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D">email:
<a href="mailto:peter.madsen@biology.au.dk"><span style="color:blue">peter.madsen@biology.au.dk</span></a><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="DA" style="font-family:"Cambria","serif";color:#1F497D">Web:
<a href="http://www.marinebioacoustics.com/"><span style="color:blue">www.marinebioacoustics.com</span></a><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D">Facebook:
<a href="https://www.facebook.com/MarineBioacoustics">https://www.facebook.com/MarineBioacoustics</a><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="color:#1F497D"><img border="0" width="474" height="72" id="Picture_x0020_1" src="cid:image001.jpg@01D08CA1.23278440" alt="sender_logo"><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="DA"><o:p> </o:p></span></p>
<p class="MsoNormal"><b><span lang="EN" style="font-family:"Cambria","serif"">Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)
<o:p></o:p></span></b></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif""><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif""><a href="http://elifesciences.org/content/early/2015/03/20/eLife.05651">http://elifesciences.org/content/early/2015/03/20/eLife.05651</a><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif""><o:p> </o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high repetition-<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">considered stable throughout target approach, which could facilitate prey escape at close-range.<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">Here, we show that, like some bats, harbour porpoises can broaden their biosonar beam during the<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">terminal phase of attack but, unlike bats, maintain the ability to change beamwidth within this phase.<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">Based on video, MRI, and acoustic-tag recordings, we propose this flexibility is modulated by the<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">melon and implemented to accommodate dynamic spatial relationships with prey and acoustic<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">complexity of surroundings. Despite independent evolution and different means of sound generation<o:p></o:p></span></p>
<p class="MsoNormal" style="text-autospace:none"><span style="font-family:"Cambria","serif";color:black">and transmission, whales and bats adaptively change their FOV, suggesting that beamwidth<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif";color:black">flexibility has been an important driver in the evolution of echolocation for prey tracking.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Cambria","serif";color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif""><o:p> </o:p></span></p>
<p class="MsoNormal"><b><span lang="EN" style="font-family:"Cambria","serif";color:#403838">Single-click beam patterns suggest dynamic changes to the field of view of echolocating Atlantic spotted dolphins (<em><span style="font-family:"Cambria","serif"">Stenella
 frontalis</span></em>) in the wild</span></b><span style="font-family:"Cambria","serif""><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif""><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif""><a href="http://jeb.biologists.org/content/early/2015/03/11/jeb.116285.abstract">http://jeb.biologists.org/content/early/2015/03/11/jeb.116285.abstract</a><o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-family:"Cambria","serif""><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN" style="font-family:"Cambria","serif";color:#403838">Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated
 auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spatial relationship between an echolocating
 predator and its prey changes rapidly, resulting in different biosonar requirements throughout prey pursuit and capture. Here we measured single click beam patterns using a parametric fit procedure to test whether free-ranging Atlantic spotted dolphins (<em><span style="font-family:"Cambria","serif"">Stenella
 frontalis</span></em>) modify their biosonar beamwidth. We recorded echolocation clicks using a linear array of receivers and estimated the beamwidth of individual clicks using a parametric spectral fit, cross-validated with well-established composite beam
 pattern estimates. The dolphins apparently increased the biosonar beamwidth, to a large degree without changing the signal frequency, when they approached the recording array. This is comparable to bats that also expand their field of view during prey capture,
 but achieve this by decreasing biosonar frequency. This behaviour may serve to decrease the risk that rapid escape movements of prey take them outside the biosonar beam of the predator. It is likely that shared sensory requirements have resulted in bats and
 toothed whales expanding their acoustic field of view at close range to increase the likelihood of successfully acquiring prey using echolocation, representing a case of convergent evolution of echolocation behaviour between these two taxa.</span><span style="font-family:"Cambria","serif""><o:p></o:p></span></p>
</div>
</body>
</html>